

Heat

Global temp ~1.1 C higher than pre-industrial level

Heat

Global temp ~1.1 C higher than pre-industrial level

Significantly more record highs than lows

Heat

Global temp ~1.1 C higher than pre-industrial level

Significantly more record highs than lows

Increasing heat stress on humans and natural systems

Lost annual daylight work hours (%) for people working hourly at 300W

Global average temperature increase, degr. C

N India

SE China

SE USA

Rising Seas

Projected Sea Level Rise in 2100 Without Climate Action

Projections are based on global mean sea level rise in 2100 (56 inches), adjusted for local subsidence and uplift.

21st Century SLR is more rapid and appears to be accelerating
Storm surges & nusiance flooding are increasing risks to coasts and waterfront

47-87 inches of rise by 2100 if no action

Over \$1 Trillion in residential real estate

Extreme Storms

10-15% more precipitation in Northeast U.S.

More intense tropical cyclones

More frequent storm surges

Climigration

13.1 million people in
319 coastal U.S. counties
could be forced to move if
sea level rises 1.8 meters
by the year 2100

Projected water stress could force movement from Southwest

Global Annual Average Radiative Forcing Change from 1750 to 2011 due to human activities, changes in solar irradiance, and volcanic emissions

(left) USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I

It's Us

Global Annual Average Radiative Forcing Change from 1750 to 2011 due to human activities, changes in solar irradiance, and volcanic emissions

(left) USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I

It's Us

Global Annual Average Radiative Forcing Change from 1750 to 2011 due to human activities, changes in solar irradiance, and volcanic emissions

(right) CDIAC; NOAA-ESRL; Houghton and Nassikas 2017; Hansis et al 2015; Joos et al 2013; Khatiwala et al. 2013; DeVries 2014; Le Quéré et al 2017; Global Carbon Budget 2017

Five Shared Socioeconomic Pathways (SSPs) In Upcoming Intergovernmental Panel on Climate Change

emissions)

Paths to Safety

Range of Global Emissions Pathways in Scenarios with

Likely Chance of 2°C or Medium Chance of 1.5°C

Achieving the Paris
Agreement targets

of 2°C or 1.5°C requires rapid decarbonization (and negative emissions)

Sources: Joeri Rogeli et al In: The Sky's the Limit (Oil Change International)

Paths to Safety

Energy
Efficiency
Gains

100%

Electrify Everything

100%

Rapid
Transition to
Zero-Carbon
Energy

37%

Natural
Climate
Solutions
(land,
agriculture &
food)

Paths to Safety

Emissions from Developed Fossil Fuel Reserves, Plus Projected Land Use and Cement Manufacture

The potential carbon emissions from the oil, gas, and coal in the world's currently operating fields and mines would take us beyond 2°C of warming.

The reserves in currently operating oil and gas fields alone, even with no coal, would take the world beyond 1.5°C.

Sources: Sources: Rystad Energy, International Energy Agency (IEA), World Energy Council, Intergovernmental Panel on Climate Change (IPCC)

In: The Sky's the Limit (Oil Change International)

Reality Check

Every Ton Counts

1.5° - 8 years
2.0° - 19 years

Carbonbudgetremaining

 Burning 1 liter of oil adds 647 liters of melt water to ocean \$69 \$2,500 \$27,000

Social Cost per metric ton of CO2, CH4, NO2

(3% average discount rate, for 2050, in 2007 dollars)

Solar PV costs
~80% lower since
2009

NREL PV system cost benchmark summary (inflation adjusted),

Benchmark: Q1 2017

Solar PV costs
~80% lower since
2009

Wind price declines of as much as 50% since late 2008

Reported wind turbine transaction prices over time

Source: US DOE 2016 Wind Technologies Market Report

Solar PV costs ~80% lower since 2009

Wind price declines of as much as 50% since late 2008

Li-ion battery
price declines of
75% since 2010

BNEF lithium-ion battery price survey, 2010-16 (\$/kWh)

Renewable Revolution

"Electricity from renewables will soon be consistently cheaper than from most fossil fuels."

"By 2020, all the renewable power generation technologies that are now in commercial use are expected to fall within the fossil fuel-fired cost range, with most at the lower end or undercutting fossil fuels."

-International Renewable Energy Agency Renewable Energy Generation Costs 2017 Report

2017, Colorado:

Median bid for new wind + storage appears to be lower than the operating cost of all coal plants in CO

Median new solar + storage bid could be lower than 74% of operating coal capacity

Renewables are majority of new utility-scale additions over past 5 years

Utility-scale renewable capacity additions gigawatts

Getting to 100%

Wind & Solar electricity generation reached 10% for the first time (March 2017)

Milestones

Texas generated more wind and solar energy than any other state, nearly all of which came from wind.

Over a third of lowa's energy now comes from wind and solar power.

Getting to 100%

Getting to 100%

image: Sierra Club

CISO and PacifiCorp launched the western Energy Imbalance Market in 2014 to balance energy supply with demand in real time and across six western states.

On 13 May 2017, California
Independent System Operator got
67.2 percent of its energy from
renewables

Getting to 100%

Balancing the Grid

Expected capacity factor of new 12MW offshore turbines provide "less-variable" renewable energy

How the Haliade-X compares

Source: GE, Vox research

Getting to 100%

Balancing the Grid

Renewable generation ~15% in 2017
It will take us >100 years to get to 100% at the current build rate...

Reality Check

Predictions have repeatedly fallen far short of the rise of solar photovoltaic (PV) energy

Reality Check

Per unit energy, renewable energy generally has a greater direct footprint than extractive energy.

Energy Sprawl

Per unit energy, renewable energy generally has a greater direct footprint than extractive energy.

Projected footprint of renewables is small compared to fossils and biomass...but not if we achieve 100% RE

Energy Sprawl

Projected footprint of renewables is small compared to fossils and biomass...but not if we achieve 100% RE

Energy Sprawl

How do we reconcile the need to develop renewable energy projects with our need to protect wildlife, natural resources, and other valued assets over the long-term?

Our Challenge

Old Paradigm to Siting

AVOID lands with highest natural resource conflicts (e.g., endangered species, migratory corridors, important habitat)

DIRECT development to lands with lower resource conflicts and renewable energy potential

MITIGATE impacts fully

Smart From the Start

A strategic approach to planning, siting, and operating renewable energy projects.

SCIENCE BASED

LANDSCAPE SCALE

INDUSTRY FRIENDLY

Smart From the Start

Solar or WindResource

Direct Impacts

Existing or PlannedTransmission

Habitat Quality

Proximity toMarket

LandscapeConnectivity

Smart From the Start

FWS
Mitigation
Policies

BLM Solar Program

Wind & Solar Leasing Rule

BLM
Planning
2.0

DOE DRECP

Wind

Directed Development
Federal Rules & Policies for
Renewable Power
Infrastructure

700,000 acres of designated leasing areas on public lands across 6 southwestern states.

Smart From the Start

80+ million acres
No consideration of impacts to
wildlife or landscape connectivity

80+ million acres

No consideration of impacts to wildlife or landscape connectivity

22 million acres open
Directed to high solar potential
Poor safeguards for wildlife

80+ million acres

No consideration of impacts to wildlife or landscape connectivity

22 million acres open
Directed to high solar potential
Poor safeguards for wildlife

687,000 acres open
24 Solar Energy Zones
Reduced wildlife impacts (still some)

80+ million acres

No consideration of impacts to wildlife or landscape connectivity

22 million acres open
Directed to high solar potential
Poor safeguards for wildlife

687,000 acres open
24 Solar Energy Zones

Reduced wildlife impacts (still some)

285,000 acres open
17 Solar Zones - 57 GW of energy potential
Critical habitat areas dropped

Smart From the Start

Shorter and Simpler Permitting

Reduced Soft Costs
& Uncertainty
Lower

Environmental Impacts

Broader Stakeholder Buy-in

PERMITTING IN ZONES: SHORTER & SIMPLER

The Bureau of Land Management (BLM) is working to SIMPLIFY the process for permitting solar projects on public lands. The former application process required BLM to start from scratch with reviews of environmental impacts from each individual project proposal.

Solar Energy Zones are pre-screened, designated development areas that avoid sensitive lands and include some initial environmental review. BLM is able to review projects in zones more efficiently and permit projects in as little as half the time of non-zone projects.

Average permitting time outside of Solar Energy Zones:

Average permitting time inside Solar Energy Zones:

Solar Energy Zones are smart from the start

More efficient permitting

Lower environmental impacts

Smart From the Start

Shorter and Simpler Permitting

Reduced Soft Costs
& Uncertainty
Lower

Environmental Impacts

Broader Stakeholder Buy-in

Accelerate the pace of renewable energy projects within New York and the Hudson Valley

Take a Smart from the Start approach to achieve a vision for renewable energy

The Opportunity

100% NEW YORK

Transition to 100% wind, water, and solar (WWS) for all purposes (electricity, transportation, heating/cooling, industry)

Residential rooftop PV 3.6%

Solar PV plants 35.8%

CSP plants 0%

Onshore wind 10%

Offshore wind 40%

Commercial/govt rooftop PV 3.2%

Wave devices 0.8%

Geothermal 0%

Hydroelectric 6.5%

Tidal turbines
0.1%

40-Year Jobs Created

Number of jobs where a person is employed for 40 consecutive years

Construction jobs:

Operation jobs:

11111 174,775 111 94,644

Source: NYSERDA

Source: World Economic Forum

