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Abstract

Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the

globe. Due to their distinctive biophysical characteristics and unique plant communities,

freshwater tidal wetlands are expected to exhibit a different response to SLR as compared

with the better studied salt marshes. In this study we employed the Sea Level Affecting

Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland

habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal

river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR

and accretion rates, we produced simulations for a spectrum of possible future wetland dis-

tributions and quantified the projected wetland resilience, migration or loss in the HRE

through the end of the 21st century. Projections of total wetland extent and migration were

more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an

increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal

wetlands expected to comprise at least 33% of the HRE’s wetland area by year 2100.

Model simulations with high rates of SLR and/or low rates of accretion resulted in broad

shifts in wetland composition with widespread conversion of high marsh habitat to low

marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not

equally distributed through the estuary, with just three of 48 primary wetland areas encom-

passing >50% of projected new wetland by the year 2100. Our results open an avenue for

improving predictive models of the response of freshwater tidal wetlands to sea level rise,

and broadly inform the planning of conservation measures of this critical resource in the

Hudson River Estuary.

Introduction

Tidal wetlands are among the most productive yet highly vulnerable ecosystems in the world

[1–4]. Among an array of ecological functions, these diverse ecosystems provide services such

PLOSONE | DOI:10.1371/journal.pone.0152437 April 4, 2016 1 / 25

a11111

OPEN ACCESS

Citation: Tabak NM, Laba M, Spector S (2016)

Simulating the Effects of Sea Level Rise on the

Resilience and Migration of Tidal Wetlands along the

Hudson River. PLoS ONE 11(4): e0152437.

doi:10.1371/journal.pone.0152437

Editor: Maura (Gee) Geraldine Chapman, University

of Sydney, AUSTRALIA

Received: November 3, 2015

Accepted: March 13, 2016

Published: April 4, 2016

Copyright: © 2016 Tabak et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All GIS data files are

available from the New York State GIS Clearinghouse

(http://gis.ny.gov). All other relevant data are within

the paper and its Supporting Information files.

Funding: An early iteration of this research was

supported by a grant from the Wildlife Conservation

Society Climate Adaptation Fund. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0152437&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://gis.ny.gov


as nutrient cycle regulation, water filtration, protection from coastal storms, and fish and wild-

life habitat [2,5–9]. Their location within or near the range of daily tides drives the notable pro-

ductivity and unique ecosystem functions of tidal wetlands [2,10], but also exposes them to

climate change impacts from accelerating rates of Sea Level Rise (SLR), as currently being

observed and projected by models from various parts of the world [11–15]. To maintain the

ecological function of tidal wetlands and their benefits to a society that is increasingly living

along shores [16,17], it is essential to be able to forecast the magnitude and nature of tidal wet-

land ecosystem responses to SLR.

Coastal managers and researchers of estuarine ecosystems have a keen need to understand

the adaptive capacity of tidal wetlands in response to SLR, and recent studies have documented

a range of ongoing and potential impacts of SLR on coastal wetlands across the globe, including

losses of wetland area, composition shifts, and/or changes in resiliency [12,18–25]. Most efforts

to date have focused on systems dominated by brackish and saltwater wetlands, and a body of

literature on simulating the impacts of SLR on these systems has been developed [18,20,22,25–

27]. Similar efforts to simulate the impacts of SLR on freshwater tidal wetlands along tidal river

systems have not been widely attempted or published.

The tidal system of the Hudson River Estuary (HRE) in New York State, USA, is uncommon

in that approximately 80% of the wetland area experiences strong tidal influence with limited

or no saltwater intrusion, and is classified as freshwater tidal wetland [28,29]. Freshwater tidal

wetlands have been relatively understudied, but their distinctness and importance have led to

greater interest and efforts in recent years [6,30]. The tidal wetlands of the HRE are recognized

for their ecological, aesthetic and economic contributions to a region where high biodiversity

co-occurs with relatively dense human habitation. The freshwater wetlands of the HRE repre-

sent one of the largest concentrations of these habitats along the northeastern United States

Atlantic seaboard [9,31].

In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which is

designed to simulate regional- or local-scale changes in tidal wetland habitats in response to

SLR [32,33], and adapted it for application in a freshwater-dominated tidal river system. Using

regionally-specific wetland maps, SLR projections, and accretion rates, we produced simula-

tions of future tidal wetland distributions and quantified the likely resilience, migration, or loss

of tidal wetland areas in the HRE under a range of future scenarios. This information can be

used for estuary-wide resilience planning and to prioritize conservation, mitigation, restora-

tion, and further study efforts among the many wetland sites in the estuary.

Materials and Methods

Study Site

The HRE, as defined by tidal influence, stretches approximately 245 km from the southern tip

of Manhattan to the federal dam in Troy (in the States of New York and New Jersey, USA)(Fig

1b). In this stretch the river only descends approximately 1.5 meters, and unlike many other

estuaries which flow through broad, low floodplains, its banks often feature steep topography,

especially in its lower reaches [34]. These conditions result in the strong propagation of tides

throughout the estuary and the distribution of approximately 2,800 hectares of tidal wetland in

relatively narrow patches skirting the shores and islands in the river (Fig 1c–1e). The system is

microtidal, with tide ranges approximately 1.3 meters near the river’s mouth decreasing to a

meter or less around 100 km up river (near its deepest reach) and then gradually increasing to

their maximum of ca. 1.7 meters in the uppermost reach of the estuary [35,36]. The extent of

saltwater intrusion into the estuary and salinity levels fluctuate seasonally and with tides

[28,37], with less than 20% of the tidal wetland area in the HRE occurring in places where the
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salinity levels are both high and consistent enough as to be classified as brackish wetlands [29].

The boundary between saltwater and freshwater also fluctuates between a defined salt wedge

that forms during neap tides and low freshwater flows and an area of well-mixed fresh and salt

water during spring tides and periods of high freshwater flow [28].

The habitats and biota of the HRE and its watershed are notably diverse [38]. The state rec-

ognizes 40 Significant Coastal Fish and Wildlife Habitat areas along the estuary—a designation

afforded to particularly rich coastal habitats, and which is used to implement coastal policies.

These designated tidal wetland complexes support a diverse fishery and provide critical habitat

for two federally endangered species (a protective legal designation under the country’s

Fig 1. The HRE and its major tidal wetland systems. (a) Location of the HRE in New York State, northeastern USA; (b) overview of the tidal wetland
systems of the HRE; (c)–(e) delineated tidal wetland systems in the HRE, from north to south. See S1 Table for a list of corresponding tidal wetland numbers
and names.

doi:10.1371/journal.pone.0152437.g001
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Endangered Species Act), the Atlantic sturgeon (Acipenser oxyrinchus) and shortnose sturgeon

(A. brevirostrum), as well as for myriad migrating and overwintering shorebirds and waterfowl

[39]. Almost all of the estuary’s tidal plant communities have limited (<100) occurrences in

the state and freshwater tidal swamps are considered the rarest among them [40]. These

uncommon freshwater tidal communities are known to host numerous rare species of birds,

odonates, fish, freshwater mussels, and plants.

In addition to its rich biodiversity, the Hudson River shore borders 78 municipalities, which

to various degrees rely on the river as a source of commerce, a water supply, economic oppor-

tunity (including tourism) and recreation. Several large tidal wetland areas are likely buffering

adjacent riverfront communities from storm impacts. With a long history of human habitation

along the HRE, its tidal wetlands have been dramatically altered by river-bottom dredging and

filling, bay impoundment by rail lines, nutrient and toxic chemical pollution, invasive species,

and adjacent land use changes, among other factors [35,41]. For instance, ongoing dredging for

improved navigation in the 56 most northern kilometers of the study area transformed a his-

torically shallow and braided river channel into a deep main channel, resulting in the filling of

over 1,700 ha (57%) of the historic shallow water and intertidal habitats [42]. Today, more

than half of the tidal wetland area in the HRE is conserved, or protected to some degree from

being altered for the purposes of development. Roughly 49% of the tidal wetlands occur in

areas owned in fee by state agencies, municipalities, and non-profit organizations as parks or

preserves; another 4% are owned by the United States military or New York State’s Office of

General Services, or are on private properties with a conservation easement.

Sea Level Affecting Marshes Model (SLAMM)

At the onset of this study, we selected SLAMM from a number of different computer programs

available to simulate changes in tidal wetlands in response to SLR. SLAMM version 6.2 [33],

and in particular its integrated accretion model and uncertainty analysis, presented a number

of advantages in the context of our research needs. SLAMM has been used successfully to cap-

ture the general patterns of tidal wetland change as tested by hindcasts [20,27]. It has been

applied in wetland systems in parts New York and Connecticut that are geographically adjacent

to our research area, and thus have similarities in many physical and ecological respects. In

addition, this program is freely accessible, benefits from a wide user base, and was well suited

to the scale and data availability of our study area [32].

Any model for forecasting tidal wetland response to SLR has its strengths and weaknesses,

and assumptions which must be considered in interpreting its projections. SLAMM associates

different types of tidal wetlands to physical conditions and processes, such as elevation in the

tidal frame (and inundation frequency), salinity, and accretion, and projects changes in land

cover based on the projected changes in those conditions. A decision tree is used to determine

the nature of land cover class changes, which are one-directional and take place in a step-wise

fashion (i.e., in each time-step a habitat class can only change to the next class as defined by the

decision tree, regardless of the magnitude of change in the conditions). This model’s frame-

work is based on the assumption that inundation leads to the establishment of new tidal wet-

land, and does not account for the time it takes for wetlands to reach equilibrium based on a

given level of inundation. The assumptions inherent to SLAMM and to our application of it to

the HRE are further discussed in the results section as they pertain to their interpretation, as

well as in the S1 Appendix.

We simulated changes in the estuary in 20-year intervals up to the year 2100, with high,

medium, and low rates of sea level rise (HSLR, MSLR, LSLR, respectively) and high, medium,

and low rates of accretion (HA, MA, LA, respectively). By comparing simulations with all of
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the different combinations of SLR accretion rates (nine in total) we were able to examine the

model’s sensitivity to wide ranges of these two parameters, which have been shown to be the

dominant and opposing drivers of change in tidal wetlands [14,43–45].

Spatial Data Sets. Input data sets to SLAMM included elevation, slope, and land cover,

which originated from existing, publicly accessible data and were processed for our study using

SLAMM and ArcGIS [46]. We calibrate a digital Elevation Model (DEM) derived from high

resolution LiDAR [47] to a mean tide level of zero based on a modeled Hudson River vertical

tidal datum [36,48], and then calculated the slope input dataset from the DEM [49]. The land

cover dataset was created by combining a tidal wetland classification map of the Hudson River

[50], the extent of the Hudson River [51], and non-tidal land cover classes from the National

Land Cover Database [52]. Adjustments to the data sets were made to maximize accuracy, cre-

ate a common 5 m2 resolution, and to simulate a common starting time frame based on the

tidal wetland map of 2007. We further processed the land cover dataset by using a “Time Zero”

SLAMM simulation, which applies the model with no change in sea level to the existing condi-

tions, and used the resulting land cover data as the input into all of the subsequent SLR and

accretion scenario simulations. The methodology for the processing of SLAMM input data is

further detailed in the S1 Appendix.

An elevation analysis of the mapped wetland data revealed that several categories were

largely overlapping, and some categories (e.g., tidal swamp) did not align well with the

SLAMM conceptual model in terms of their elevation in the tidal frame. This misalignment

was due in part to a classification scheme in the original wetland mapping that was not

intended for use in SLAMM, and in part likely due to the freshwater conditions dominating

the HRE [2,30](S1 Appendix). Since SLAMM version 6.2 has a pre-defined class-switching

decision tree that is, for the most part, not customizable, we used the information from the ele-

vation analysis to combine our wetland classes into a simplified classification with three classes

that transition sequentially with increasing inundation: High Marsh, Low Marsh, and Tidal

Flat (Fig 2, Table 1, S1C Fig). This re-classification is the key aspect of our adaptation of

SLAMM to freshwater tidal conditions, as it uses only classes with simple transition rules that

are not dependent on the influence of salinity, yet adequately reflects the zonation of both the

brackish and freshwater wetlands of the HRE. We raised the default minimum elevation of the

high marsh category from 0.5 to 0.8 Half Tide Units (HTU)(half of the elevation of the full

range of tide, spanning from Mean Lower LowWater and Mean Higher HighWater) to better

reflect the observed data and to differentiate between the high and low marsh types.

Sea Level Rise Projections. Rates of relative SLR in the northeastern United States coastal

zone generally exceed eustatic rates, with coastal zones around New York City experiencing

SLR at approximately twice the global rate due to local land subsidence and changes in Atlantic

Basin currents [53,54]. In the Hudson River, SLR rate projections inclusive of the highest values

fall in the range of 28 to 190 cm in the 21st century [53,55,56]. Observed rates during the years

2000–2014 (based on tide gauge readings at the Battery in Manhattan [54]) are approximately

0.7 cm/year, which falls within the middle range (25th–75th percentile) of local projections.

We used New York State ClimAID local SLR projections as a guide for our three SLR levels,

including projections for “Region 4 –New York City” and “Region 5 –Troy Dam”—the south-

ern and northern portions of our study area, respectively [56]. Slightly higher local rates of SLR

are projected for areas south of the City of Kingston (ca. 145 km up the estuary) due to more

pronounced vertical land movement (resulting from glacial isostatic adjustment) in this area

[55]. We used the low and high estimates of the ClimAID projections (10th and 90th percentiles,

respectively) as our low and high SLR inputs, and the mean of the middle range (25–75th per-

centile) as our medium SLR input (Table 2).

Sea Level Rise Effects on Hudson River Tidal Wetlands
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Rate of Accretion. The building up of the tidal platform by the process of accretion,

including mineral and organic contributions, allows tidal wetlands to adapt to changes in sea

level through feedbacks that promote vertical changes in the wetland platform [14,43,44,57].

The HRE has a complex and dynamic sedimentary regime [58,59], which combines with likely

high organic matter contributions to overall accretion [60]. Estimates of accretion or sedimen-

tation rates from various studies on HRE wetlands (including the subtidal shallows) vary

widely, ranging approximately 0.3–29 mm/yr depending on time scale, sampling method, wet-

land location in the estuary and wetland type [29,61–63]. Empirical data or model estimates

that combine levels of available sediment, deposition rates and organic inputs, and relate them

to long term rates of accretion were not available on an estuary-wide basis.

To approximate accretion rates across elevation and tidal wetland types, we used three

generic curves that mechanistically describe the feedbacks between marsh elevation and accre-

tion [14,33,43]. We defined the curves using three maximum values that capture the likely

range of possible maximum accretion values over the study’s timeframe (Fig 3), and used these

curves to derive accretion rate parameters for high and low marsh (based on their elevation

Fig 2. The frequency of occurrence of the model’s tidal wetland classes along an elevation gradient.
Data shown are for the northern portion of the study area, and exclude any values that were well outside of
the elevation range of each wetland class. This pattern of elevational frequency for the three tidal wetland
classes is representative of both the north and south sections of the study area.

doi:10.1371/journal.pone.0152437.g002

Table 1. Re-classification of the 2007 mapped wetland classes into SLAMM classes with model eleva-
tion ranges. Elevation ranges are in Half Tide Units—the difference between Mean Higher High Water or
Mean Lower LowWater and Mean Tide Level.

Land Cover Class (SLAMM
category name)

Elevation Range
(HTU)

2007 Mapped Wetland Classes

Developed Upland, Undeveloped
Upland

> 1.5 Upland

High Marsh (Irregularly Flooded
Marsh)

0.8–1.5 Wooded Swamp, Scrub/Shrub, Phragmites

australis, Salt Meadow

Low Marsh (Regularly Flooded
Marsh)

0–1.2 Typha angustifolia, Upper Intertidal, Spartina
alterniflora

Tidal Flat -1–0 Vegetated Lower Intertidal, Unvegetated Flat

Estuarine Open Water < -1 Submerged Aquatic Vegetation, Trapa natans,
Open Water

doi:10.1371/journal.pone.0152437.t001
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range in the model)(S1 Appendix). In tidal flats we applied a constant rate of half the maxi-

mum accretion rate [18]. We used this rough estimate—a simplification of the more nuanced

conditions that have been shown to exist in some freshwater tidal flats [14], and which could

vary particularly depending on the vegetated or non-vegetated nature of the flat—due to a lack

of data in our study area. Our use of a range of accretion scenarios represents an intentional

effort to produce results that will include a wide range of possibilities, in lieu of the ability to

parameterize more accurate accretion models across the estuary with the currently available

information.

Data Analysis

We examined model results in terms of 1) projected tidal wetland extent and composition, 2)

wetland resilience and migration, 3) the geography of projected changes in the HRE, 4) model

sensitivity and 5) model uncertainty. Wetland resilience measures include loss, change, and

persistence of existing wetlands and the formation of new tidal wetland in former upland areas

(i.e., wetland migration). To quantify resilience, we used ArcGIS to compare the raster of initial

conditions with the raster file results of different scenarios (S1 Appendix). In the context of

wetland resilience and migration, we also sought to evaluate the contribution of currently con-

served lands to the future wetland area, and to this end we used ArcGIS to relate a raster of

Table 2. SLR projections in centimeters (rounded to the nearest whole number) used in SLAMM simulations for the north and south sections of
the HRE.

Location Rate of SLR Year of Simulation

2020 2040 2060 2080 2100

South Low 3 9 17 25 35

Medium 7 22 42 65 88

High 14 47 89 137 187

North Low 2 6 12 18 25

Medium 6 20 37 57 78

High 13 45 85 130 177

doi:10.1371/journal.pone.0152437.t002

Fig 3. The three generic accretion curves used to parameterize high, medium and lowmarsh
accretion rates in SLAMMmodels. Elevation is in Half Tide Units [HTU]—the difference between Mean
Higher HighWater or Mean Lower LowWater and Mean Tide Level.

doi:10.1371/journal.pone.0152437.g003
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conserved lands (current as of April 2015) to the SLAMM results. Additionally, we aimed to

quantify the future conflict between marsh migration and developed lands (i.e., those areas

where land uses would prevent marsh migration, such as buildings and roads). Our SLAMM

simulations intentionally allowed developed areas to convert to tidal wetlands (i.e., developed

areas were not “protected” from change). We then post-processed the simulations’ raster out-

puts in order to report on tidal wetland projections in the estuary with the exclusion of devel-

oped uplands, while also quantifying the level of potential conflict between future wetlands and

currently developed areas (S1 Appendix).

To analyze the impact of geography on model results, we delineated the major tidal wetland

systems along the Hudson (Fig 1c–1e, S1 Table). This delineation was based on New York

State Department of Environmental Conservation’s named tidal wetland systems and the

state’s Department of State designated Significant Coastal Fish &Wildlife Habitat areas [39],

with two additions based on the input data and projections. In all, we delineated 48 wetland

areas, totaling nearly 2,700 hectares (almost 95% of the total wetland area in the estuary). We

used ArcGIS to analyze the projected wetland changes under different SLR and accretion sce-

narios by wetland system. This allowed us to examine which wetland systems are most likely to

undergo change or exhibit resilience, in terms of wetland loss, persistence or expansion. We

also use these wetland areas as the basis for uncertainty analyses for site-specific conservation

planning purposes.

Uncertainty Analysis

Uncertainty analysis is important for interpreting SLAMMmodel results given the errors

inherent in the model’s inputs [23,45], but was prohibitive at the scale of our entire study area

(which spans an area with two different sets of SLR projections). The SLAMM 6.2 model pro-

vides a built-in uncertainty analysis function employing a Monte Carlo method in which

model parameter values are randomly selected from user-defined probability distributions on a

multiplier scale, for a specified number of model iterations [33]. Examining the full range of

results and the level of consensus among the results of these iterations provides information

about the range of possible changes and the level of certainty in the projected changes. We ran

uncertainty analyses on individual wetland system sites, varying the rate of SLR, maximum

rates of accretion, the DEM and the tide range from the MSLR-LA scenario based on estimated

probability distributions and known error in these parameters (S1 Appendix).

We created a python script geoprocessing tool to visualize the results of the uncertainty

analyses. The tool aggregates the results of all iterations and outputs a raster of the wetland

class projected in the majority of iterations for each pixel, along with a classification of the per-

cent of models that projected that class (e.g.,<50%, 50–90%,>90%). Following the example of

Clough et al. 2014 [23] we also developed a tool that quantifies the likelihood of specific, user-

specified changes in class from the initial condition to a specified time frame, which allows us

to generate percent likelihood maps for various predicted future conditions (e.g., the percent

likelihood of the conversion of any land cover type to open water by 2100, the percent likeli-

hood of tidal wetland resilience by 2060). In the results section we present an example of the

uncertainty analysis for the Iona Island Marsh tidal wetland area (Fig 1e, #38).

Results and Discussion

Based on current observed rate of SLR and reported rates of accretion, the medium SLR and

low accretion scenario (MSLR-LA) most closely correlates with the observed conditions for

both sections of the Hudson, and thus is referred to as the “current trend” scenario

[54,58,62,64,65]. Results of high SLR simulations represent more dramatic yet plausible

Sea Level Rise Effects on Hudson River Tidal Wetlands
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changes, which may result from more drastic increases in rate of SLR due to the accelerated

melting of the West Antarctic and Greenland ice sheets [55,66]. Since current observed SLR

rates already well exceed those of the low SLR value, the results of the LSLR scenarios were

used only to examine model parameter sensitivity, and are not otherwise discussed in the this

section. We also focus on the results for the full time span of our study; all of the figures and

trends described below are based on the projections for year 2100, except where otherwise

noted. In some instances we also report the results of the “consensus” of the MSLR and HSLR

scenarios—this is the area where all six simulations overlapped in their projection of the condi-

tion reported (e.g., all scenarios projected some type of tidal wetland by year 2100).

Projected Tidal Wetland Extent and Composition

Based on the “Time Zero” simulation the Hudson River supported approximately 2,800 hect-

ares of tidal wetlands in the baseline year 2007. All MSLR and HSLR modeled scenarios pro-

jected a net increase in total tidal wetland area (including high marsh, low marsh, and tidal

flat) through the century due to the upland migration of marshes, ranging from 465–1,600

hectares. Projections of total wetland extent were lowest in the HSLR-LA scenario (3,300 ha)

and reached a maximum of 4,400 hectares in the HSLR-HA scenario. The wetland area of con-

sensus among the six scenarios totaled 2,260 hectares.

In all MSLR and HSLR scenarios, total wetland extent increases driven by new wetland for-

mation were partially offset by the transition of existing wetlands to open water. The HSLR sce-

narios projected the greatest losses of existing wetland areas to permanent inundation by the

end of the century, ranging from ca. 600–1,700 ha (Fig 4d–4f). In the HSLR-LA scenario, gains

in new wetlands only exceeded the extent of losses by 22%.

Our findings suggest that in the HRE, overall loss of tidal wetland area to inundation in this

century could be offset if marsh migration into upland areas is realized. This may be in contrast

to the some saltwater coastal zones in southeastern New York State, where a rapid loss of tidal

wetland has been documented [67–69]. This difference could be the result of several factors or

their combination, including a differing adaptive capacity of salt and freshwater systems,

higher rates of local SLR due to subsidence, or the generally higher density of development that

is associated with southeastern New York’s saltwater coastal zones, which limits wetland

migration pathways [21,24,53,70].

The composition of tidal wetland habitats is projected to shift considerably in the current

trend and all high SLR scenarios (Fig 4a and 4d–4f, Table 3). Under these scenarios, high

marsh area will decrease and low marsh will increase over the century. These same four scenar-

ios will also see the most significant increases in estuarine open water (i.e., permanent inunda-

tion of wetland and upland areas), and all HSLR scenarios also project increases in tidal flat.

These trends result from a rate of SLR that exceeds the capacity of the high marsh to accrete. In

comparison, the MSLR-MA and MSLR-HA scenarios both project increases in high marsh and

low marsh, with only slight losses of tidal flat (Fig 4b and 4c). With these more moderate rates

of SLR, a moderate or high rate of accretion allows for low and high marsh to maintain their

relative elevation in the tidal frame.

The current extent of low marsh was sustained or increased in all MSLR and HSLR scenar-

ios, in part as a consequence of the conversion of existing high marsh to low marsh. However,

in the HSLR-LA and HSL-MA scenarios, the initial gains projected for low marshes decline in

later time frames (2080 and 2100)(Fig 4d and 4e). In our model, the fate of tidal flat habitats

strongly reflects rate of SLR, with MSLR leading to slight losses and HSLR leading to potentially

great gains (reaching over 300% in the low and medium accretion scenarios), mostly at the

expense of wetlands higher in the tidal frame (Fig 4). Initial transitions between high and low

Sea Level Rise Effects on Hudson River Tidal Wetlands
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Fig 4. Change in wetland extent and wetland classes. (a) MSL-LA, (b) MSLR-MA, (c) MSLR-HA, (d) HSLR-LA, (e) HSLR-MA, and (f) HSLR-HA scenarios.

doi:10.1371/journal.pone.0152437.g004
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marsh may be slightly exaggerated in our model, due to the upward adjustment of the mini-

mum elevation value for high marsh, and the elevational overlap between the high and low

marsh types. The long-term patterns, and particularly those of transitions from low marsh and

tidal flat, are little or not at all affected by this model adjustment. Projected wetland losses (the

transition from tidal flat) are driven in part by our static estimated rate of accretion for this

wetland type, and can be improved when better data are available.

Two recent studies applying SLAMM to the coasts of New York and Connecticut projected

similar patterns of composition shifts, with high marsh conversion to low marsh increasing

with higher SLR rates, and the highest rates of SLR also driving conversion of low marsh to

tidal flats [23,71]. The New York study by Clough et al. [23] overlapped in extent with ours at

Piermont Marsh; this is a 109-hectare tidal wetland system dominated by high marsh that is

located at the southern end of the HRE, and is the most saline of the estuary’s brackish wet-

lands (Fig 1c, #48). The results of the two studies are difficult to compare directly due to differ-

ences in model parameters (e.g., rates of SLR simulated, accretion model, wetland classes),

which result in part from model parameterization that is based on relatively large study areas

which are mostly non-overlapping, and in part from study design (e.g., we tested a range of

accretion scenarios, none of which correspond exactly with the model used by Clough et al.).

Our study’s results from the scenario with the largest projected changes (HSLR-LA, Fig 5g)

were more drastic than any projections by Clough et al., in large part due to our comparatively

low rate of accretion in this scenario. However both studies found a similar pattern, with high

marsh exhibiting resilience to change in simulations with low rates of SLR and/or in short time

frames, but ultimate conversions to low marsh and tidal flat with higher rates of SLR by 2100.

Comparable patterns have also been projected by a recent study in the San Francisco Bay Estu-

ary that similarly compared a range of SLR and accretion rate scenarios using the Marsh Equi-

librium Model [24].

Wetland Resilience and Migration

To assess tidal wetland resilience, we classified land cover conversions into the following cate-

gories: most resilient (wetlands that persist in their class), somewhat resilient (wetlands that

change in class), new wetlands (wetlands forming in upland areas), and lost wetlands (those

converted to open water). While newly formed wetlands are not a measure of the ability of a

Table 3. Wetland change (ha and%) by time step in the MSLR-LA and HSLR-LA scenarios. Numbers in each time step represent changes from the pre-
vious time step (with 2020 representing the change from the Time Zero simulation of year 2007).

2020 2040 2060 2080 2100 Total by 2100

ha % ha % ha % ha % ha % ha %

Medium SLR Total Tidal Wetland 75 3% 154 5% 214 7% 167 5% 204 6% 814 29%

High Marsh -58 -4% 137 9% 45 3% -366 -22% -390 -30% -632 -41%

Low Marsh 121 17% 17 2% 217 26% 593 56% 593 36% 1542 220%

Tidal Flat 12 2% 0 0% -48 -8% -60 -11% 1 0% -96 -17%

Open Water 11 0% 44 0% 97 0% 132 0% 103 0% 388 1%

High SLR Total Tidal Wetland 159 6% 290 10% 289 9% 187 5% -459 -12% 466 17%

High Marsh -34 -2% -261 -17% -527 -43% -151 -21% -94 -17% -1067 -69%

Low Marsh 187 27% 585 66% 609 41% -515 -25% -544 -35% 322 46%

Tidal Flat 6 1% -35 -6% 207 38% 853 112% 179 11% 1210 209%

Open Water 41 0% 212 1% 272 1% 326 1% 901 3% 1752 6%

doi:10.1371/journal.pone.0152437.t003
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wetland to persist, they contribute to the overall resilience of the tidal wetland system over

time.

The consensus area of projected wetland provides some insight into the likely envelope of

future tidal wetlands based on the two driving parameters of SLR and accretion. Across the

estuary this area of overlap in projections measured ca. 99 ha of most resilient wetlands, 1,020

ha of somewhat resilient wetlands, 1,140 ha of new wetland, in addition to ca. 60 ha of lost wet-

land. Under the current trend scenario, 49% of current tidal wetlands are projected to undergo

a change in class (e.g., high marsh to low marsh), 37% are projected to be resilient enough to

adapt to SLR without class conversion, and 14% of existing tidal wetlands are projected to

become permanently inundated. In this MSLR-LA scenario the biggest projected change in any

land cover class (including tidal wetlands and uplands) is the conversion of over 1,100 hectares

of high marsh to low marsh. The HSLR-LA simulation indicates a more extreme outcome in

Fig 5. Projections for the Piermont Marsh tidal wetland area (Fig 1c, #48). (a) Time Zero (current conditions); MSLR with (b) HA, (c) MA, and (d) LA by
year 2100; HSLR with (e) HA, (f) MA, and (g) LA by year 2100.

doi:10.1371/journal.pone.0152437.g005
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terms of overall tidal wetland area and resilience by the end of the century; in this scenario the

most resilient wetlands represent only 4% of the total and 60% of tidal wetlands in 2007 are lost

to inundation (Fig 6).

Under the current trend scenario, SLAMM projected ca. 1,200 hectares of new wetland

forming in undeveloped uplands. These migrated marshes represent 33% of the total projected

tidal wetland area. Of the wetlands projected to migrate into undeveloped upland areas,

approximately 47% would occur in already conserved areas, and the remaining 53% would

occur in places that are not conserved in fee or by easement, and which are more susceptible to

future development. In the HSLR-LA scenario the relative importance of new wetlands is

much greater, with ca. 2,150 ha of new wetland representing 66% of the total wetland area. The

conflict of migrating marshes with developed areas is also expected to be exacerbated by high

rates of SLR, measuring over 800 ha in all three HSLR scenarios as compared with 330 ha

under the current trend scenario (Fig 6). These projections highlight the need for changes to

regulatory conservation of tidal wetlands to accommodate dynamic wetland boundaries [72],

the importance that acquisition and other conservation measures have in protecting future

tidal wetlands and the need for adaptive planning in developed coastal areas.

We consider existing wetlands that are resilient to SLR over time to be a high priority for

conservation, as they represent places that provide important enduring ecosystem services and

species habitat, and will likely serve a critical bridging function for new wetlands. New wet-

lands, formed by the migration of high marsh into upland areas, are a key component of long-

term marsh resilience, and become increasingly important components of the tidal wetland

portfolio under scenarios with higher rates of SLR. The availability of adjacent undeveloped

upland areas varies between wetland sites, and those with constrained migration pathways are

more vulnerable (i.e., less resilient) to shifts in habitat composition and inundation [24]. Bar-

ring saltwater intrusion, freshwater tidal wetlands may generally be more resilient to SLR than

salt or brackish marshes [21,73], and thus there may be variation in resilience in the tidal wet-

lands of the HRE such that the currently brackish wetlands and those freshwater ones closest

to them (i.e., those that will become brackish in the case of more pronounced saltwater intru-

sion into the estuary) may be more vulnerable to future shifts. Variation in the position of wet-

lands systems relative to the river (e.g., in coves, around islands), shoreline topographies, and

adjacent land uses will also likely impact wetland resilience to SLR.

Geography of Change and Resilience

The HRE’s major tidal wetland systems, which encompass approximately 95% of the total wet-

land area in the estuary, are projected to vary in their response to increases in SLR. The north-

ern reach, which is characterized by generally larger tide ranges and wider floodplains, hosts

the largest wetland complexes (Fig 1b, S1 Table) and is projected to experience the largest tidal

wetland expansions in the coming century. Based on the MSLR-LA scenario, only three of

these northern wetlands combine to support over 50% of all projected new wetlands in the

estuary (Figs 7 and 1c #5–7). At Papscanee and Campbell Islands (wetland #5) the wetland

expansion area on private, non-conserved lands measures ca. 175 ha—by far the largest such

expansion in the estuary, representing a notable conservation opportunity. Wetlands with the

greatest projected losses in the current trend scenario also tended to gain relatively little new

wetland area, due at least in part to steep shoreline topographies (e.g., Fig 7 #20, 21, 24 and 35).

Wetland resilience also varied across the estuary. Locations with the highest projected per-

centage of most resilient wetland in the MSLR-LA scenario are characterized by currently hav-

ing relatively high proportions of low marsh (and in particular cattail-dominated marsh)(e.g.,

Fig 7 #17 and 24). The distribution of low marsh in our model is skewed toward the higher

Sea Level Rise Effects on Hudson River Tidal Wetlands
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elevations in its range (i.e., its abundance peaks around 0.8 HTU, in an elevational range of

0–1.2 HTU), and thus it can tolerate relatively larger increases in sea levels before the model

projects a conversion to tidal flat. Seven wetland areas in the estuary are considered to exhibit

the highest overall resilience, with currently existing wetland areas accounting for�90% of the

total wetland area projected by the end of the century (including new wetland)(Fig 7 #17, 19,

24, 35, 37, 38, and 48). Marsh migration potential (as described in a previous section) and over-

all wetland size can also be considered important components of tidal wetland resilience. The

high productivity of freshwater tidal wetlands may provide an important boost to accretion

and overall adaptability as compared with saline coastal wetlands [24,70], which would add a

geographic gradient to wetland resilience in the HRE that is not accounted for by our study.

Model Sensitivity

Projections of total wetland extent and migration were primarily driven by the SLR parameter,

with rate of accretion acting as a secondary driver (Fig 8). For instance, the MSLR-LA scenario

Fig 6. Projected wetland resilience and loss in HRE wetlands by year 2100. Somewhat resilient wetlands are those that experience a change in class,
while most resilient wetlands are those that maintain the same class through the century.

doi:10.1371/journal.pone.0152437.g006
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Fig 7. Wetland resilience and loss projected within the wetland systems of the HRE under the current trend scenario. Somewhat resilient wetlands
are those that experience a change in class, while most resilient wetlands are those that maintain the same class through the century. Fig 1c–1e shows the
location of the tidal wetland systems in the estuary, and the S1 Table relates wetland system numbers to names.

doi:10.1371/journal.pone.0152437.g007
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projected ca. 1,200 hectares of new wetland while the HSLR-LA scenario projected ca. 2,200

hectares of new wetland—a difference of 1,000 hectares (Fig 6). In contrast, varying the accre-

tion level between low and high in a medium SLR scenario resulted in a difference of only 4

hectares of projected new wetland. The impact of differing rates of accretion on total wetland

extent and composition was greatest under HSLR scenarios and in time frames of 2060 or later

(Figs 4 and 8). Accretion also had a pronounced effect on resilience measures, with increased

accretion rates boosting the proportion of most resilient wetlands to somewhat resilient wet-

lands as well as decreasing wetland losses within each SLR level (Fig 6, S4 Table).

The sensitivity of a model comparing different rates of SLR and accretion to each of these

factors necessarily depends on the ranges of the parameters tested. In our study we aimed to

test a wide range of SLR and accretion rates, and the differences in projected SLR for the HRE

affected the measures of wetland extent and migration more dramatically than the estimated

possible range of accretion. This highlights a need for updated or refined eustatic and relative

SLR projections in order to produce accurate tidal wetland models. In model simulations with

custom rates of SLR by year 2100, such as in our study, SLAMM scales the rate to the A1B max-

imum scenario described by the Intergovernmental Panel on Climate Change [33,74]; this is

another element of SLR projections that may be refined with new data and models. Our results

also indicate that a better understanding of local accretion rates is important for anticipating

the resilience of tidal wetlands in the HRE. New empirical data for accretion rates across the

estuary’s extent and wetland elevation gradients will allow for refinements of the generalized

accretion model used in our study and also for projecting trends at a finer scale. Inclusion of

both sediment availability and organic inputs into accretion measures may be especially impor-

tant in our study area due to the high relative impact of organic inputs in found in some lower

salinity systems [24,44]. The overall patterns of model sensitivity found by our study mirror

those of other studies where sensitivity to both rates of SLR and accretion were tested [24,45].

Uncertainty Analysis: Iona Island Marsh

Iona Island Marsh is a brackish wetland located in the southern portion of the HRE (Town of

Stony Point, Rockland County, NY; Fig 1e #38) that is managed as part of the Hudson River

National Estuarine Research Reserve. We used the uncertainty analysis, with the geoprocessing

Fig 8. Total tidal wetland area projected by the nine SLR and accretion scenarios. These results include
high marsh, low marsh and tidal flat, and exclude developed upland areas that were projected to convert to
wetland.

doi:10.1371/journal.pone.0152437.g008
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tools described in the Materials and Methods section and probability distributions for SLR by

2100, the DEM, accretion maxima, and greater diurnal tide range (S1 Appendix) to produce

outputs that account for the known uncertainties in these model inputs. The results showed a

wide range of projected changes in tidal wetland composition, but a pattern of high marsh con-

version to low marsh over the century was dominant, as well as an increase in estuarine open

water (i.e., wetland inundation)(Fig 9). Examination of the majority class map for Iona Island

Marsh by year 2100 indicated that the uncertainty analysis iterations were most consistent (i.e.,

highest percent values) in projecting inundation of tidal flat habitats, and in small areas where

high or low marsh are likely to be resilient throughout the century.

Since this entire wetland system is owned and managed by the State of New York (as part of

the Hudson River National Estuarine Research Reserve), there is a high potential for manage-

ment activity to promote wetland resilience. As an example of how the analysis can inform

management decisions, we used our geoprocessing tool to query the uncertainty analysis itera-

tions for the likelihood of inundation of any type of wetland by year 2100 (Fig 10). The areas

with the highest likelihood of inundation may guide management aimed at promoting

accretion.

The uncertainty analysis results can be compared to the MSLR-LA deterministic model

results by comparing the mean and range of values associated with the iterations. For Iona

Island Marsh, the mean values of the uncertainty model iterations moderated the trends pro-

jected by the deterministic model over the century for each wetland type (Fig 11).

Some places where the uncertainty analysis iterations overlap most in wetland projections

and resilience classification may reflect error in the original wetland class mapping. For

instance, a high marsh area mis-classified as tidal flat would be projected by most model itera-

tions to be resilient due to the one-way nature of the SLAMM decision tree (i.e., wetland classes

can only convert towards classes lower in the tidal frame).

Given the uncertainty inherent in many of our model’s parameters, uncertainty analyses

such as the one for Iona Island Marsh are important for, and translate well into, the design of

effective site-specific land conservation and restoration efforts [75]. These analyses can also

help inform where monitoring plots would be most effective for model verification and

improvements.

Conclusions

Our study represents the first comprehensive assessment of possible tidal wetland responses to

sea level rise in the HRE. Based on its high local rates of SLR, microtidal environment, prevail-

ing steep shoreline topography, a long history of shoreline development, as well as observed

and projected tidal wetland losses around the globe, the HRE could be considered at high risk

to wetland losses. However, our study’s findings indicate that there may be, in fact, consider-

able opportunity for inland wetland migration and localized wetland resilience through the

21st century, owing in large part to the availability of low-gradient floodplains at the base of the

steeper slopes in some parts of the estuary. If current rates of SLR do not increase dramatically,

losses of existing wetland could amount to less than 15% of existing wetlands by the year 2100,

which would be offset by considerably larger gains in new marsh; wetland composition may

remain relatively stable under moderate or high accretion conditions.

However, there is also cause for great concern over the long-term fate of the HRE’s tidal

wetlands. If high SLR rate projections are realized while accretion remains low, the projected

net gains in wetlands could experience a steep decline late in the century. Under high rates of

SLR there could be a dramatic shift in wetland habitat composition and wetland losses in the

range of 21–60% of the current tidal wetland area. Even if the high sea levels are not
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Fig 9. Majority projections of uncertainty analysis iterations for Iona Island Marsh by year 2100.

doi:10.1371/journal.pone.0152437.g009
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Fig 10. Percent likelihood of the inundation of any type of exiting tidal wetland by the year 2100 at Iona Island Marsh.

doi:10.1371/journal.pone.0152437.g010
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experienced during this century, our simulations may offer a glimpse of tidal wetland fate

beyond the 21st century. Net losses in the longer term can be expected in any scenario where

the rate of SLR outpaces accretion, since in most places in the estuary the low floodplains even-

tually meet with steeper slopes that will hinder marsh migration.

Fig 11. Comparison of the current trend scenario deterministic model (MSLR-LA) and uncertainty
analysis results.Uncertainty analysis results include mean, 10th percentile, and 90th percentile for Iona
Island Marsh’s (a) high marsh, (b) low marsh, and (c) tidal flat categories.

doi:10.1371/journal.pone.0152437.g011
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Our models necessarily simplify the very complex environment and processes of the HRE,

and due to uncertainty in the projected rates of SLR and accretion it is possible that our results

do not fully capture the possible magnitude of change in this system. By illustrating general

trends in the primary geophysical processes and the availability of physically suitable future

tidal habitat areas these results nevertheless represent a critical first step in regional conserva-

tion planning. The examination of projected trends and conserved lands by wetland system

within the estuary is aimed at improving conservation practice by enabling an informed pro-

cess of prioritization. Our analysis of projected changes in terms of wetland resilience to SLR

represents an innovation that is also intended to inform future conservation and wetland man-

agement. Along with land conservation, ongoing work in the estuary is targeting shoreline and

side channel restoration as well as invasive species control and native marsh restoration. Our

study highlights the need for additional and higher quality site-specific data to inform such

efforts, but also provides a useful, heretofore absent, planning tool that will help ensure the per-

sistence of HRE tidal wetlands into the future. We hope that our methodology can also inform

the development of improved tools for assessing freshwater tidal wetlands in other parts of the

world, and ultimately advance the management of these valuable ecosystems.
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